a2 United States Patent

Takakura

US009477618B2

US 9,477,618 B2
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)
(73)
")

@

(22)

(65)

(30)

Mar. 31, 2014

(1)

(52)

(58)

INFORMATION PROCESSING DEVICE,
INFORMATION PROCESSING SYSTEM,
STORAGE MEDIUM STORING PROGRAM
FOR CONTROLLING INFORMATION
PROCESSING DEVICE, AND METHOD FOR
CONTROLLING INFORMATION
PROCESSING DEVICE

Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

Inventor: Hideki Takakura, Kawasaki (JP)

Assignee: FUJITSU LIMITED, Kawasaki (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.
Appl. No.: 14/618,044

Filed: Feb. 10, 2015

Prior Publication Data

US 2015/0278127 Al Oct. 1, 2015
Foreign Application Priority Data

(000 Y 2014-072265
Int. CI.
GOGF 12/00
GOGF 13/16
GOGF 12/10
GOGF 3/06
U.S. CL
CPC

(2006.01)
(2006.01)
(2016.01)
(2006.01)
........... GOG6F 13/1642 (2013.01); GOGF 3/061
(2013.01); GOGF 3/0659 (2013.01); GO6F
3/0676 (2013.01); GO6F 12/1018 (2013.01);
GOGF 3/067 (2013.01); GO6F 2212/657
(2013.01)

Field of Classification Search
CPC .. GO6F 13/1642; GOG6F 3/061; GO6F 3/0659;

MAIN PROCESS

GOG6F 3/067; GO6F 3/0676; GOGF 12/1018;
GOG6F 2212/657
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,289,383 Bl 9/2001 Rhine
2006/0080457 Al 4/2006 Hiramatsu et al.
2009/0248917 Al* 10/2009 Kaloscccccevennnine GOG6F 3/061
710/39
2010/0037231 Al 2/2010 Chen et al.

FOREIGN PATENT DOCUMENTS

JP 2000-172541 6/2000
JP 2002-358259 12/2002
JP 2006-67401 3/2006
JP 2007-188452 7/2007
JP 2010-152435 7/2010

OTHER PUBLICATIONS

Extended European Search Report dated Aug. 27, 2015 in corre-
sponding Furopean Patent Application No. 15155151.2.

* cited by examiner

Primary Examiner — Shawn X Gu
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

An information processing device, comprising: a memory;
and one or more central processing units coupled to the
memory and configured to: control accesses to a device
based on requests from users, record a start time of each
access to the device and an end time of the access to the
device, determine a load state of the device based on an
elapsed time period from the start time to the end time, and
limit, based on the load state of the device, a number of
threads for one of the users, the threads being concurrently
executed to access the device based on access requests to the
device from the one of the users.

9 Claims, 19 Drawing Sheets

Ta=998399
ot
Coun=0

REFERENCE REQ..EST FROM
REQUEST QUEUE FOR
USER USING ROUND-308 N METHOD

ASSIGN THREAD TO REQUEST,
INCREMENT NUMBER 9F EXECUTED
THREADS FOR INTERESTED LS=R BY 1. AND
INCREMENT NUMBER OF EXECUTED

THREADS FOR ALL USERS BY 1

SET, TO Umax,
MINMUM NUMBER AMONG
NUNBERS OF EXECUTEL:
THREADS FOR ALL USERS

il DISK ACCESS PROCESS. [

REDLCE NUMBER OF EXECUTED THREADS FOR
INTERESTED USER BV

REDLCE NUMBER OF EXECUTED THREADS FOR

ALL USERS BY 1, AND-ADC 1 TO Count

1

U.S. Patent Oct. 25, 2016 Sheet 1 of 19 US 9,477,618 B2

FIG. 1

100

SERVER MACHINE OF
DISTRIBUTED FILE SYSTEM 103 | 120

106 /
 DISKACCESS
)lf | TIVE RECORDER |

JERVER J,< v DISK DEVICE

ACCESSTIVE || 108

/| RECORD TABLE
02| THREAD | I
 ASSIGNMENT a
~ CONTROLLER e
STATE ANALYZER
[REQUESTRECEIVER }»101
i
Sl I— ——>—~130

CLIENT MACHINE OF DISTRIBUTED FILE SYSTEM

US 9,477,618 B2

Sheet 2 of 19

Oct. 25, 2016

U.S. Patent

8 SS300V F114

£ $S300V 3114

I LY

9 §S300V F114

G §S320v F114

¥ SS300V 31714

£ 5S300V F114

¢ SS300V 14

0§l

oyl

0LL | 00L | 06

08

0L

09

L SS300V F1I4

(SANODASITIIN) AOIM3d INIL A3SdY 13

¢ 9ld

US 9,477,618 B2

Sheet 3 of 19

Oct. 25, 2016

U.S. Patent

80~

SS300V T18YLN03X3
$$300¥ 318Y1N03X3 ATSNOINYIINNIS 50 STAIL 40 ¥3amnN
A18N0INYLINIIS NYHL 3 TIVINS 8O OL N0 ¥38NAN 0/ ~— £0¢
40 SIIL A0 HIBNAN 2= 4350 3N0 01 S18VNOISSY
SQY3AHL 30 HFENNN NNAIXY
4 A A
SFANNN ANV ONIMOTIOA NYHL 3 TTVS -
40 0L N3 S ¥38WNN HOIAM 30 SQ¥34AL 31N03X3
7= SHISN T | = SQYAHL | = SQYAHL
404 STVHHL Q31033 40 ¥3GNNN 03LN03)3 40 u3aWNN
Q3LN03X3 50 HIBWNN 015 = Q1 439N 00€5 = 0 433N
)) 4 i)
G0¢ (c#) y0e | . (1) y0€
0ers090 L
000590910 3 —
" 000729090 : ot Lo
1000890910 I e U
B[Nz
000+89090 0
SQV3UHLGA1N03
SONFANON | 3N
ONILWIGN] H3LNIOd
~ T18VLHSYH 00€S |
L0 WRES) g
€ 9Ol

US 9,477,618 B2

Sheet 4 of 19

Oct. 25, 2016

U.S. Patent

a1 S 40 3114 LYHINTD a0l 40 3114 LYHINTD
00%S a1 ¥3sN 00€§ Al ¥3sN
HLIM ¥3SN 40 NOILYY3dO HLIM ¥3SN 40 NOILYY3dO
aLop~’ vi0p~
v y
NILLIMM 38 0L Y1Va: NILLIMM 38 OL V1Va:

a4 G =HIONITV.LYa
00pG = dI 435N

ax 0l = HLONI1VL1va

00€G = dr g3sn:

g 153N03Y v 1S3ND3Y
o azoy~’ vzZor~
HILLINSNYYL
1S3n03Y
INIHOVYN INTITD
v y
0gl~<___ >
¥ 9Ol

U.S. Patent Oct. 25, 2016 Sheet 5 of 19 US 9,477,618 B2

FIG. 5
OFFSET DESCRIPTION
0 REQUEST TYPE (WRITE)
8 USER ID
16 SIZE OF DATA TO BE WRITTEN
24 DATA TO BE WRITTEN

U.S. Patent Oct. 25, 2016 Sheet 6 of 19 US 9,477,618 B2

En
\ I

AT
[@y 957
 avgz)
a9
 ize
D
avg
i
Az
X
215
952
871

FIG. 6

SIZE OF DATA TO BE WRITTEN

0.01
0.008
0.006
0.004
0.002

o™
=
<
o

0.014

(SaN0D3S)

O

NILIMM €04 JAIL

U.S. Patent Oct. 25, 2016 Sheet 7 of 19 US 9,477,618 B2

FIG.7

USERID | _7g1 70

5300 HASH TABLE

T INDEX | USERID [TOP ADDRESS OF QUEUE
GENERA/;E 0 5000 0x70681000
e =1 5300 x70680000._.

FROM 2 5100 0x70674000

USERID | 3 5400 |- 0x70665000 .

A 4 57007 0x70654a00
USERID _ e

500 | - -
T T05A-1 , L~ T05A-2 . 705A-3
REQUEST A-1 REQUEST A2 REQUEST A3
DATA LENGTH=4 KB - DATALENGTH=4KB DATALENGTH =2 KB
TOPDATAADDRESS | .~{" FIRST ADDRESS THIRD ADDRESS

) 704A
-~ /\/7058'1 /\/7058'2

REQUEST B-1 REQUEST B2

DATA LENGTH =4 KB DATALENGTH=1KB

TOP DATA ADDRESS SECOND ADDRESS

704B

U.S. Patent Oct. 25, 2016 Sheet 8 of 19 US 9,477,618 B2
FIG. 8
USERID | g1 ~803
5300 HASH TABLE
T a0 INDEX | USERID | NUMBER OF EXECUTED THREADS
GENER;’TE 0 5000 0
HASHVALUE g 5300 1
FROM) 5100 0
o e 5400 1
¢ 4 5700 0
USERID i
5400
NUMBER OF EXECUTED)
THREADS FORALL USERS

U.S. Patent

Oct. 25, 2016

FIG. 9
(' MANPROCESS)

!

Ta=999999
Umax =Ta
Count=0

—~S5901

Sheet 9 of 19

US 9,477,618 B2

>l<

REFERENCE REQUEST FROM
REQUEST QUEUE FOR
USER USING ROUND-ROBIN METHOD

—5902

5903

NUMBER OF EXECUTED THREADS FOR
INTERESTED USER IS SMALLER THAN Umax?

\NO
/

e 5904

(

NUMBER QOF EXECUTED THREADS FOR
ALL USERS IS SMALLER THAN Ta?

\NO
/

#YES

5905

l L5911

ASSIGN THREAD TO REQUEST,
INCREMENT NUMBER OF EXECUTED
THREADS FOR INTERESTED USER BY 1, AND
INCREMENT NUMBER OF EXECUTED
THREADS FOR ALL USERS BY 1

SET, TO Umax,
MINIMUM NUMBER AMONG
NUMBERS OF EXECUTED
THREADS FOR ALL USERS

!

DISK ACCESS PROCESS

— 5906

!

REDUCE NUMBER OF EXECUTED THREADS FOR
INTERESTED USER BY 1,
REDUCE NUMBER CF EXECUTED THREADS FOR
ALL USERS BY 1, AND ADD 1 TO Count

—~ 5907

!

5908

NO

b

Count = 1000

)

#YES

CALCULATE NUMBER QF TIMES OF
SIMULTANEQUSLY EXECUTABLE ACCESS

—S5909

'

Count=0
Umax=Ta

—~35910

US 9,477,618 B2

Sheet 10 of 19

Oct. 25, 2016

U.S. Patent

g 125890 0 069617 '209€66L2€L | 01951 ‘Z09E66LLE)
¢ L£7090 0 0/S517 209666160 | 0CISS) ‘Z096661/€)
¢ 116850 0 066117 209666160 | 0B0ES) ‘Z09666.1/E)
_ 612120 0 06GZEL 'L09EB6LLEL | O/ELIL L09EB6LLE]
Z 618520 0 0SZ¥61 "009566L2EL | 0Z¥891 "009566.L€)

Z 8620€0 0 09Z¥8) '009€662LEL | 096€G) "009€66.LE)
sop e O3 | QOMIdINLAISAVE | $$300¥¥SIGH0IWLANG | SSIO0N 4810 40 FWIL LS
\ m \)
p001 £00} 2001 100}
IIE

U.S. Patent Oct. 25, 2016 Sheet 11 of 19 US 9,477,618 B2

FIG. 11

(DISK ACCESS PROCESS)

'

WRITE CURRENT TIME IN | _s1101
DISK ACCESS START TIME ITEM

!

EXECUTE DISK ACCESS PROCESS —51102

'

WRITE CURRENT TIME IN

DISK ACCESS END TIME ITEM AND L 31103
CALCULATE AND

WRITE ELAPSED TIME PERIOD

!

CALCULATE NUMBER OF TIMES OF L 51104
ACCESS EXECUTED IN PARALLEL

U.S. Patent Oct. 25, 2016 Sheet 12 of 19 US 9,477,618 B2

FIG. 12

CALCULATION OF NUMBER OF
TIMES OF ACCESS EXECUTED IN PARALLEL

'

Li = UNIT FOR CHECKING (10 MILLISECONDS)
Ts = START TIME OF DISK ACCESS 51201
Te = END TIME OF DISK ACCESS

Total =0; Cnt=0;

REFERENCE AGGREGATION TABLE 1,
COUNT NUMBER OF TIMES OF DISK ACCESS
SIMULTANEQUSLY EXECUTED FOR —~51202

TIME PERIOD FROM Ts TO (Ts + Li),
AND ADD COUNTED NUMBER TO Total

!

ADD 1 TOCntANDADD LiTO Ts —~51203

STORE VALUE OBTAINED BY DIVIDING Total BY Cnt
IN ITEM REPRESENTING NUMBER OF TIMES OF
ACCESS EXECUTED IN PARALLEL IN AGGREGAT|ON 1 —~51205
AND ROUNDING DIVISION RESULT OFF TO)
CLOSEST NATURAL NUMBER

U.S. Patent

Oct. 25, 2016

Sheet 13 of 19

FIG. 13A
1301 1302 1303
RATIO OF AVERAGE OF ELAPSED TIVE
NUMBER OF TIMES OF AVERAGE OF | pERI0DS TO AVERAGE OF ELAPSED TIME
ACCESS EXECUTEDIN | - ELARSED TME. | PERIODS INWHICH NUVBER OF TIVES OF
ACCESS EXECUTED IN PARALLEL IS 1
1 0021219 1TINE
0.0280585 132 TIVES
0.0607523 286 TIVES
FIG. 13B
RATIO OF AVERAGE OF ELAPSED TIVE
NUMBER OF TIMES OF AVERAGE OF | pERI0DS TO AVERAGE OF ELAPSED TINE
ACCESS EXECUTEDIN | ELARSED TME. | PERIODS IN'WHICH NUMBER OF TINES OF
ACCESS EXECUTED IN PARALLEL IS 1
1 0021219 1TINE
) 0 _
3 0 »
1 0.0802534 378 TIVEES
FIG. 13C
RATIO OF AVERAGE OF ELAPSED TIVE
NUMBER OF TIMES OF AVERAGEOF | pERi00S TO AVERAGE OF ELAPSED TIVE
ACCESS EXECUTEDIN: |+ ELAPSED TME.1PERIGDS INWHICH NUMBER OF TIVES OF
ACCESS EXECUTED IN PARALLEL IS 1
1 0021219 1TINE
? 0.0280585 1,32 TIVES

US 9,477,618 B2

U.S. Patent Oct. 25, 2016 Sheet 14 of 19 US 9,477,618 B2

FIG. 14
(CALCULATION OF NUMBER OF TIMES OF

SIMULTANEOUSLY EXECUTABLE ACCESS

!

SET MAXIMUM VALUE AMONG NUMBERS OF TIMES OF ACCESS
EXECUTED IN PARALLEIS_ETTO1|\4)E) INHAGGREGATION TABLE1 [~51401
e

>¢

AGGREGATE ELAPSED TIME PERIODS IN WHICH NUMBERS OF
TIMES OF ACCESS EXECUTED IN PARALLEL AREEQUALTO | 1409
He AMONG NUMBERS OF TIMES OF ACCESS EXECUTED IN

PARALLEL IN AGGREGATION TABLE 1

51403
/_/
(" ELAPSEDTNE PERIOD S 0 (THERE ISNODATA OF Hely WES ——

‘NO

DIVIDE TOTAL OF AGGREGATED ELAPSED TIME PERIODS BY
NUMBER OF ELAPSED TIME PERIODS SO AS TO CALCULATE
AVERAGE VALUE AND WRITE NUMBER, INDIGATEDBY He, | 51404
OF TIMES OF ACCESS EXECUTED IN PARALLEL,
AVERAGE OF ELAPSED TIME PERIODS, AND

RATIO CF ELAPSED TIME PERIODS IN AGGREGATION TABLE 2 y,51409
¢< ok VARIABLE \l(-lEeSB 7)
ADD 17O He 51405
Y 51406
4NO< He = Mx >/J
J7ES

EXECUTE LINEAR INTERPOLATION TO CALCULATE VALUE FOR
PART NOT HAVING DATA OF NUMBER OF TIMES OF ACCESS
EXECUTED IN PARALLEL,

COMPARE AVERAGE OF ELAPSED TIME PERIODS WITH
AVERAGE OF ELAPSED TIME PERIODS IN WHICH NUMBER OF

TIMES OF ACCESS EXECUTED IN PARALLEL 1S 1, | 51407
CALCULATE MAXIMUM VALUE AMONG NUMBERS OF TIMES OF
ACCESS EXECUTED IN PARALLEL FOR ELAPSED TIME
PERIODS EQUAL TO OR SHORTER THAN N TIMES OF
STANDARD ELAPSED TIME PERIOD,AND
SET CALCULATED MAXIMUM VALUE TO Ta AS NUMBER OF
TIMES OF SIMULTANEOUSLY EXECUTABLE ACCESS

CLEAR AGGREGATION TABLE 1 AND AGGREGATION TABLE2 51408

|
-

US 9,477,618 B2

Sheet 15 of 19

Oct. 25, 2016

U.S. Patent

g SY3SN 11V 804 SAYIHHL
(310033 40 438NN 0078
. REN
£ 0 g «
0 00.9 4
] 00%5 £ |je— ary3sn
0 001 4 mz_%ﬂmm%
| 00€9 | D — EIVGENER)
- aa 0 0009 0
,,,,,,,,,, F EETEEE] I VIO f
.............. 40 ¥3glnN 435N 0065
318¥L HSYH aryasn
1051~
Gl 9Ol4

FIG. 16
(" MAINPROCESS)

Ta=999999
Umax=Ta —S5901
Count=0

U.S. Patent Oct. 25, 2016 Sheet 16 of 19 US 9,477,618 B2

T

REFERENCE REQUEST FROM
REQUEST QUEUE FOR —~5902
USER USING ROUND-ROBIN METHOD

v 5903
NUVBER OF EXECUTED THREADS FOR _ \NO
INTERESTED USER S SWALLER THAN Umax? S1601
YE -
Sl< YES (CUSER TYPE IS PRIORITY)
5904 -

NUMBER OF EXECUTED THREADSFOR ~ \NO
ALL USERS IS SMALLER THAN Ta? /

e 5905 l 5911

-

ASSIGN THREAD TO REQUEST, SET TOU
INCREMENT NUMBER OF EXECUTED VIO NUMBE‘}?’;\’MONG
THREADS FOR INTERESTED USER BY 1, AND
INCREMENT NUMBER OF EXECUTED TNHURMEE\%FESF%%E\{E%%TEER%
THREADS FOR ALL USERS BY 1

v |

DISK ACCESS PROCESS —S5906

!

REDUCE NUMBER OF EXECUTED THREADS FOR

INTERESTED USER BY 1 | _so07

REDUCE NUMBER OF EXECUTED THREADS FOR
ALL USERS BY 1, AND ADD 1 TO Count

" ' 5908
<—< Count = 1000
IVES

CALCULATENUMBER OF TMESOF | |-_sg0g
SIMULTANEOUSLY EXECUTABLE ACCESS

'

Count=0 |
Umax=Ta 5910

US 9,477,618 B2

Sheet 17 of 19

Oct. 25, 2016

U.S. Patent

. SIS TV 104 SQv3UHL
q3LN93X3 40 ¥3anAN 001
: Qryasn
omo%@ﬁ, | 0 00.G 1 «
F 0015 S — D?m%:
00501259 © 0 00}s 4 INTWA HSVH
0708¢ F 0085 | le——— 3N
051567 . 0 0008 0 +
e e el qAlIaA |
1S3118) INNOWYOL | ™335 ygsn | AN 05
T1av.L HSVH aryasn
10LL~
Ll "©Old

U.S. Patent Oct. 25, 2016 Sheet 18 of 19

FIG. 18
(MAINPROCESS)

!

Ta=999999
Umax =Ta —~S901

Count=0

US 9,477,618 B2

>l<

~ REFERENCEREQUESTFROM
~ USERWHOSE IO AMOUNT ISSMALL.

5903

5902

NUMBER OF EXECUTED THREADS FOR ~ \NO

INTERESTED USER IS SMALLER THAN Umax? /

G 5904

<

NUMBER OF EXECUTED THREADSFOR ~ \NO

ALL USERS IS SMALLER THAN Ta? /

y'E° 5905

l 5911

ASSIGN THREAD TO REQUEST,

INCREMENT NUMBER OF EXECUTED
THREADS FOR INTERESTED USER BY 1. AND WWEEJE%%%BE%(%M%\S;
INCREMENT NUMBER OF EXECUTED NMBERS OF BCCUED

THREADS FOR ALL USERS BY 1

SET, TO Umax,

'

DISK ACCESS PROCESS —S5906

!

REDUGE NUMBER OF EXECUTED THREADS FOR
INTERESTED USER BY 1, REDUCE NUMBER OF
EXECUTED THREADS FOR ALL USERSBY 1, —~S907’
ADD 1T0 Count, AND
ADD IO AMOUNT OF INTERESTED USER

| 5908

<LO<

Count = 1000

*YES

CALCULATE NUMBER OF TMESOF | |-_sg0g
SIMULTANEQUSLY EXECUTABLE ACCESS

'

Count =0

Umax=Ta —~S910’
CLEAR IO AMOUNTS OF ALL USERS

U.S. Patent

Oct. 25, 2016

Sheet 19 of 19

US 9,477,618 B2

1905

FIG. 19
1907 19302 19301
COMMUNICATION
INTERFACE MEMORY CPU
1908
INPUT OUTPUT PORTABLE
STORAGE
DEVICE DEVICE 11908~ yepiomDRvinG | | Reiee
DEVICE DEVICE
1903 1904

i

@1909

US 9,477,618 B2

1

INFORMATION PROCESSING DEVICE,
INFORMATION PROCESSING SYSTEM,
STORAGE MEDIUM STORING PROGRAM
FOR CONTROLLING INFORMATION
PROCESSING DEVICE, AND METHOD FOR
CONTROLLING INFORMATION
PROCESSING DEVICE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2014-
072265 filed on Mar. 31, 2014, the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to an
information processing device configured to control access
to a device based on a request from a user, an information
processing system, a storage medium storing a program for
controlling an information processing device, and a method
for controlling an information processing device.

BACKGROUND

In a distributed file system such as a network file system
(NFS), when a file is accessed from many client machines
concurrently, a high load may be applied to a server machine
and the rate of the access to the file may be significantly
reduced. This is mainly due to the fact that a disk wait period
increases due to a conflict in access to a disk device
connected to the server machine.

As a technique for controlling access to a file, the fol-
lowing technique is known. A percentage to be used is
assigned to each of users, and factors of all applications to
be executed by the users are determined. The factors are
associated with requests to search data from an arbitrary
application. Times to start the requests to search the data are
calculated for batches of the data requests in accordance
with the associated factors. As a result, the times to start the
requests by all users corresponding to the batches are
aligned based on the calculated start times. A system read-
justs the start times in order for the system to efficiently
operate (for example, a technique described in Japanese
Laid-Open Patent Publication No. 2000-172541).

A multiplicity is set for each data managing device. A data
managing device with a high multiplicity processes a large
number of search requests concurrently and processes each
search request for a long time, while a data managing device
with a low multiplicity processes a smaller number of search
requests concurrently and processes each search request for
a short time. A service server estimates a processing time for
each of search requests from a user terminal, assigns a
search request to be processed for a long time to the data
managing device with the high multiplicity, assigns a search
request to be processed for a short time to the data managing
device with the low multiplicity, and thereby improves the
efficiency of a search request process. The search request to
be processed for the short time is processed and completed
by the data managing device with the high multiplicity for
the short time. Even if the number of search requests to be
concurrently processed is too large, a time for processing the
search requests is not too long, compared with the case
where the search requests are not concurrently processed,
and the number of search requests to be concurrently pro-

10

15

25

30

40

45

2

cessed in an overall system increases (for example, a tech-
nique described in Japanese Laid-Open Patent Publication
No. 2010-152435).

In addition, as techniques for controlling access to a file,
there are techniques described in Japanese Laid-Open Patent
Publications Nos. 2002-358259, 2006-067401, and 2007-
188452, for example.

In the distributed file system, a time for each access may
be longer by multiple times than a time for independently
executed access. Thus, fairness between users may not be
secured, especially when a high load is applied.

SUMMARY

According to an aspect of the invention, an information
processing device, comprising: a memory; and one or more
central processing units coupled to the memory and config-
ured to: control accesses to a device based on requests from
users, record a start time of each access to the device and an
end time of the access to the device, determine a load state
of the device based on an elapsed time period from the start
time to the end time, and limit, based on the load state of the
device, a number of threads for one of the users, the threads
being concurrently executed to access the device based on
access requests to the device from the one of the users.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion, as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating a configuration of a
distributed file system according to first to third embodi-
ments;

FIG. 2 is a diagram illustrating a specific example of the
calculation of the number of times of file access executed in
parallel for each of elapsed time periods;

FIG. 3 is a diagram describing operations of controlling
the number of executed threads for all users and the number
of executed threads for each of the users;

FIG. 4 is an explanatory diagram illustrating a request
transmitter;

FIG. 5 is a diagram illustrating an example of a data
format of a request;

FIG. 6 is a diagram illustrating an example of a graph of
time periods for writing data with respect to the sizes of the
data to be written if a third extended (EXT3) file system (a
block size=4 KB) is provided;

FIG. 7 is a diagram describing request management by a
request receiver;

FIG. 8 is a diagram illustrating an example of a data
configuration of a hash table;

FIG. 9 is a flowchart of a detailed example of a process
of controlling the assignment of threads;

FIG. 10 is a diagram illustrating an example of a data
configuration of an aggregation table;

FIG. 11 is a flowchart of a detailed example of a disk
access process;

FIG. 12 is a flowchart of a detailed example of a process
of calculating the number of times of disk access executed
in parallel;

US 9,477,618 B2

3

FIGS. 13A, 13B, and 13C are diagrams illustrating an
example of a data configuration of another aggregation
table;

FIG. 14 is a flowchart of a detailed example of a process
of calculating the number of times of parallel executable
access;

FIG. 15 is a diagram illustrating an example of a data
configuration of a hash table according to the second
embodiment;

FIG. 16 is a flowchart of a detailed example of a process
of controlling the assignment of threads according to the
second embodiment;

FIG. 17 is a diagram illustrating an example of a data
configuration of a hash table according to the third embodi-
ment;

FIG. 18 is a flowchart of a detailed example of a process
of controlling the assignment of threads according to the
third embodiment; and

FIG. 19 is a diagram illustrating an example of a hardware
configuration of a server machine that may achieve a dis-
tributed file system provided with functions illustrated in
FIG. 1.

DESCRIPTION OF EMBODIMENTS

In a distributed file system, when a disk device is accessed
in concurrent from many points, a processing time per each
access is longer by multiple times than a processing time for
independently executed access, and thus a response may be
delayed. Thus, when a high load is applied, processing of a
small amount (IO amount) of data to be input and output in
accordance with an operation by a user may be significantly
delayed due to processing of a large amount (IO amount) of
data to be input and output in accordance with an operation
by another user. Thus, fairness between the users may be
secured.

Hereinafter, first to third embodiments are described with
reference to the accompanying drawings.

FIG. 1 is a diagram illustrating a configuration of a
distributed file system according to the first to third embodi-
ments. The distributed file system includes a server machine
100 configured to access, in a shared manner, a disk device
120 that is an external storage device with a RAID system,
for example. The distributed file system includes at least one
client machine 110 connected to the server machine 100
through a network 130 such as a local area network (LAN)
or the Internet, for example. The client machine 110 issues,
to the server machine 100, a request to access the disk device
120. The request is a request to write file data in the disk
device 120, a request to read file data from the disk device
120, or the like, for example.

The server machine 100 includes a request receiver 101,
a thread assignment controller 102, a disk access time
recorder 103, a disk load state analyzer 104, an access time
record table 105, and server threads 106. The client machine
110 includes a request transmitter 111.

The disk access time recorder (access recorder) 103
records start times of access to the disk device (device) 120
and end times of the access to the disk device 120 in the
access time record table 105 stored in a memory of the
server machine 100, for example. When multiple requests to
execute access are provided from users, the disk access time
recorder 103 records start times of the access and end times
of the access in the access time record table 105, for
example.

The disk load state analyzer (load state analyzer) 104
determines a load state of the disk device 120 based on

10

15

20

25

30

35

40

45

50

55

60

65

4

elapsed time periods from the start times recorded in the
access time record table 105 to the end times recorded in the
access time record table 105, for example.

The thread assignment controller 102 limits, based on the
load state of the disk device 120 to be accessed based on a
request from a user, the number of threads that are concur-
rently executed to access the disk device 120. The request is
transmitted from the request transmitter 111 included in the
client machine 110 operated by the user, received by the
request receiver 101 included in the server machine 100
through the network 130, and transferred to the thread
assignment controller 102, for example. The thread assign-
ment controller 102 limits the number of server threads 106
that are concurrently executed on the server machine 100 for
each user in order to access the disk device 120.

According to the aforementioned configuration, the disk
load state analyzer 104 may dynamically analyze the load
state of the disk device 120 based on a change of the state
of the disk device 120. The state of the disk device (device)
120 is, for example, the number of times of access and may
cause a temporal change of response performance and the
like of the disk device 120. In the first embodiment, con-
current access control that is fair for the users is achieved by
limiting, based on load states calculated for temporally
changing states of the disk device 120, the number of threads
that are concurrently executed to access the disk device 120
based on the request from the user. This is due to the fact that
it is possible to calculate the number (number of times of
concurrently executable access), suppressing a delay of
access with respect to a time to access the disk device 120,
of times of access executed in concurrent.

In the aforementioned configuration, the request receiver
101 may divide a data size of a request transmitted from the
client machine 110 into certain sizes causing time periods
for access to the disk device 120 to be within certain time
periods and issue, to the disk device 120, requests to access
the disk device 120. This control inhibits a variation in the
time periods for the access. The certain time periods are each
approximately 10 milliseconds, for example. The certain
sizes are each equal to a block size of a file system of the
disk device 120, for example.

The disk access time recorder 103 counts, for each access
issued by server threads 106, the number of times of the
interested and other access, issued by server threads 106 and
executed in concurrent, to the disk device 120 for the
interested access for each of the certain time periods within
an elapsed time period for the interested access from a start
time of the access issued by a server thread 106 and an end
time of the access issued by the server thread 106. The disk
access time recorder 103 calculates, for each access, an
average of the numbers of times of the access executed in
concurrent within the overall elapsed time period for the
interested access based on the counted number of times of
the access executed in concurrent for each of the certain time
periods and thereby calculates, for each access, the number
of the times of the access executed in concurrent within the
overall elapsed time period for the interested access, for
example.

The disk load state analyzer 104 calculates the number of
times of concurrently executable access when the total of the
numbers of times of access executed in concurrent within an
elapsed time period for each access becomes a certain value.
For example, the disk load state analyzer 104 compares an
elapsed time period for independently executed access with
elapsed time periods for access executed in concurrent
among the time periods for the access and determines, as the
number of times of concurrently executable access, the

US 9,477,618 B2

5

number of times of access executed in concurrent within an
elapsed time period that is equal to or shorter than N (N>0)
times of the elapsed time period for the independently
executed access among the numbers of times of access
executed in concurrent. Specifically, the disk load state
analyzer 104 determines the load state of the disk device 120
by determining the number of times of concurrently execut-
able access. The disk load state analyzer 104 may appro-
priately detect temporally changing load states of disks by
repeating the analysis of the load state at certain time
intervals.

The thread assignment controller 102 limits the number of
concurrently executed server threads 106 so as to ensure that
the number of the concurrently executed server threads 106
does not exceed the number of times of concurrently execut-
able access.

After the disk load state analyzer 104 determines the
number of times of concurrently executable access, records
of the access time record table 105 are cleared. Then, the
thread assignment controller 102 limits, based on the deter-
mined number of times of concurrently executable access,
the number of concurrently executed server threads 106. The
disk access time recorder 103 restarts recording an access
time period in the access time record table 105 for each
access and calculates, for each access, the number of times
of access executed in concurrent within an elapsed time
period for the interested access. When the total of the
numbers of times of access executed in concurrent within an
elapsed time period for each access becomes the certain
value again, the disk load state analyzer 104 aggregates the
elapsed time periods for the numbers of the times of the
access executed in concurrent and recalculates the number
of times of concurrently executable access based on the
result of the aggregation. Even if a delay of disk access is not
reduced by calculating the number of times of concurrently
executable access once, the load state of the disk device 120
may be more accurately determined by calculating the
number of times of concurrently executable access multiple
times.

In this manner, concurrent access control that is executed
based on a change in the state of the disk device 120 and is
fair for the users is achieved by repeating the calculation of
the number of times of concurrently executable access.
Access fairness between the users is secured by controlling
time periods for access and thereby causing the time periods
for the access to be equal to or shorter than N times of the
elapsed time period of independently executed access. Spe-
cifically, when the number of executed threads does not
exceed the total number of executed threads accepted by the
system, the number of times of access executed in concur-
rent for each user is limited and the number of threads for a
user who causes a high load is limited. Thus, even a user
who causes a low load may access the disk device 120 and
thus the fairness may be achieved. The state of the disk
device 120 includes the aforementioned number of times of
access from the user, failure statuses of disks forming the
RAID system, the type of the request causing the access, and
the like. In the first embodiment, the number (number of
concurrently executed threads) of executed threads is lim-
ited, and thus an increase in a processing time per each
access is suppressed. Thus, the occurrence of a delay of a
response by the file system may be suppressed.

FIG. 2 is a diagram illustrating a specific example of the
calculation of the number of times of access executed in
concurrent for each of elapsed time periods for file access by
the disk access time recorder 103. This example assumes
that the lengths of all data are equal to each other.

40

45

6

In the example illustrated in FIG. 2, after a time of 10
milliseconds elapses after the start of the execution of file
access 1, the execution of file access 2 is started with a cross
call. The number of times of file access executed in con-
current for a time period from 0 to 10 milliseconds is 1, the
number of times of file access executed in concurrent for a
time period from 10 milliseconds to 30 milliseconds is 2,
and the number of times of file access executed in concurrent
for a time period from 30 milliseconds to 40 milliseconds is
1. An elapsed time period for the file access 1 is 30
milliseconds. An average of the numbers of times of file
access executed in concurrent for time periods from 0 to 30
milliseconds is calculated according to the following equa-
tion, while the time periods are each 10 milliseconds.

The average of the numbers of times of access executed
in concurrent for the file access 1=(1+2+2)/3=1.67 and the
elapsed time period for the file access 1 is 30 milliseconds.

Similarly, an average of the numbers of times of access
executed in concurrent for file access 2=(2+2+1)/3=1.67 and
an elapsed time period for the file access 2 is 30 millisec-
onds.

An average of the numbers of times of access executed in
concurrent for the file access 3=(1+1+1)/3=1 and an elapsed
time period for the file access 3 is 30 milliseconds.

An average of the numbers of times of access executed in
concurrent for a file access 4=(1+3+4+5)/4 =3.25 and an
elapsed time period for the file access 4 is 40 milliseconds.

An average of the numbers of times of access executed in
concurrent for a file access 5=(3+4+5+4+4)/5=4 and an
elapsed time period for the file access 5 is 50 milliseconds.

An average of the numbers of times of access executed in
concurrent for a file access 6=(3+4+5+4+4)/5=4 and an
elapsed time period for the file access 6 is 50 milliseconds.

An average of the numbers of times of access executed in
concurrent for a file access 7=(4+5+4+4+2+2)/6=3.5 and an
elapsed time period for the file access 7 is 60 milliseconds.

An average of the numbers of times of access executed in
concurrent for a file access 8=(5+4+4+42+2)/5=3.4 and an
elapsed time period for the file access 8 is 50 milliseconds.
Equations (1)

In the example illustrated in FIG. 2, the calculated aver-
age of the numbers of times of access executed in concurrent
for the file access 3 is 1, and the file access 3 is indepen-
dently executed (or is not executed in concurrent with other
file access) for the elapsed time period for the file access 3
as illustrated in FIG. 2. In the example illustrated in FIG. 2,
if it is assumed that the number of times of access to be
processed in parallel in the disk device 120 with a cross call
is up to 2, the request receiver 101 keeps file access waiting
in a request queue on a memory managed by the request
receiver 101 for time periods, indicated by “wait” in FIG. 2,
of 10 milliseconds. Thus, the elapsed time periods for the file
access 4 to 8 are each longer than the original time period of
30 milliseconds.

In the aforementioned calculation example of Equations
(1) for the file access 1 to 8, a correlation between an average
of the numbers of times of access executed in concurrent for
interested access and an elapsed time period for the inter-
ested access may be obtained. According to the correlation,
when the average of the numbers of times of access executed
in concurrent for the interested access increases and exceeds
the number of times of concurrently executable access
accepted by the system, and the number of times of access
kept waiting increases, an elapsed time period for the
interested access increases. For example, it is sufficient if the
following control is executed based on the correlation in
order to suppress an increase in a delay of access to the disk

US 9,477,618 B2

7

device 120. It is sufficient if the numbers of times of access,
executed in concurrent, to the disk device 120 are controlled
so0 as to ensure that elapsed time periods for the access are
equal to or shorter than N times of the elapsed time period
for independently executed access or N times of the elapsed
time period in which the number of times of access executed
in concurrent is 1. In this case, N is 1.5, 2, or the like, for
example.

In general, when the number of times of access, executed
in concurrent, to the disk device 120 increases, a processing
time per each access is longer by a certain value or more than
a processing time for independently executed access, and a
delay of a response by the file system occurs. Thus, access
to the disk device 120 is biased toward a user who causes a
high load, and disk access by a user who causes a low load
may be inhibited. In the first embodiment, the data size of
the request is divided into the certain sizes, requests are
issued, and a time period for each access to the disk device
120 may be a certain time period (of, for example, 10
milliseconds). Thus, the number of times of access executed
in concurrent for each of the certain time periods may be
accurately calculated. A time for a response to access may be
controlled to be equal to or shorter than N times of a time
period for a response to independently executed access by
limiting the number of times of concurrently executable
access based on the number of times of access executed in
concurrent for each of the certain time periods. In addition,
requests to execute access that are provided by users may be
fairly processed while time periods for responses to the
access are equal to or shorter than N times of the time for the
response to the independently executed access. In the first
embodiment, since the numbers of times of access, executed
in concurrent, to the disk device 120 are limited, delays of
responses to requests may be suppressed and the numbers of
the times of the access executed in concurrent may be
controlled so as to avoid the fact that only the numbers of
times of access executed in concurrent based on requests
from users who cause a high load increase. In the calculation
example of the aforementioned Equations (1), an elapsed
time period in which the number of times of access executed
in concurrent is 1 is the elapsed time period for the file
access 3 and is 30 milliseconds. If N=1.5, 1.5 times of the
elapsed time period in which the number of times of access
executed in concurrent is 1 is 30 millisecondsx1.5=45
milliseconds. The disk load state analyzer 104 selects the
maximum value among the averages of the numbers of times
of access executed in concurrent for the file access executed
for time periods of 45 milliseconds or less in the calculation
example of the aforementioned Equations (1). As a result, in
the calculation example of the aforementioned Equations
(1), the average of the numbers of the times of the access
executed in concurrent for the file access 4 executed for the
elapsed time period of 40 milliseconds is selected and is
3.25. As described above, the thread assignment controller
102 controls the number of concurrently executed server
threads 106 and thereby controls access to the disk device
120. The disk load state analyzer 104 determines, as the
number of times of concurrently executable access, an
integer “3” of 3.25 that is the selected average of the
numbers of the times of the access executed in concurrent
and notifies the thread assignment controller 102 of the
integer “3”.

The thread assignment controller 102 limits the number of
concurrently executed server threads 106 so as to ensure that
the limited number does not exceed the notified number “3”
that is the number of times of concurrently executable
access.

10

15

20

25

30

35

40

45

50

55

60

65

8

After that, the number of times of concurrently executable
access is changed to 3, and details included in the access
time record table 105 stored on the memory and correspond-
ing to the calculation results of the aforementioned Equa-
tions (1) are cleared. Then, when the total of the numbers of
times of file access becomes equal to a certain value, the
number of times of concurrently executable access is recal-
culated in the aforementioned manner, and it is determined
whether the recalculated number of times of concurrently
executable access is valid.

In the configuration of the distributed file system illus-
trated in FIG. 1, the thread assignment controller 102 may
count the number of concurrently executed server threads
106 for each of the users and the number of concurrently
executed server threads 106 for all the users. In this case, the
thread assignment controller 102 may process requests while
the number, counted for all the users, of concurrently
executed threads does not exceed the number, notified by the
disk load state analyzer 104, of times of concurrently
executable access. When requests that cause the number,
calculated for all the users, of times of concurrently executed
threads to exceed the number of times of concurrently
executable access are provided, the thread assignment con-
troller 102 may execute the following control operation.
That is, the thread assignment controller 102 reduces, based
on the minimum number, counted for a user, of times of
concurrently executed threads among the numbers, counted
for the users, of times of concurrently executed threads, the
numbers of times of concurrently executed server threads
106 based on requests from the other users.

FIG. 3 is a diagram describing operations of controlling
the number (number of concurrently executed threads) of
executed threads for all the users and the numbers (number
of concurrently executed threads) of executed threads for
each of the users.

The thread assignment controller 102 activates a server
thread 106 for each of requests issued by the request receiver
101 at time intervals of, for example, 10 milliseconds, based
on a request from the request transmitter 111 included in the
client machine 110 (illustrated in FIG. 1) operated by the
user. The thread assignment controller 102 limits the number
of concurrently executed server threads 106 for each of the
users and the number of concurrently executed server
threads 106 for all the users.

More specifically, the thread assignment controller 102
executes the following control operation when activating a
server thread 106 based on a request newly input to the
thread assignment controller 102 from the request receiver
101.

First, the thread assignment controller 102 executes a
process 302 of generating a hash value for a user ID 301
added to the aforementioned input request. For example, a
hash value “1” is generated from a value “5300” of the user
1D 301.

The thread assignment controller 102 searches, on a hash
table 303 stored in the memory of the server machine 100,
a record having the generated hash value in an INDEX item.

If the interested record does not exist on the hash table
303, the thread assignment controller 102 executes the
following process. First, the thread assignment controller
102 generates a new record on the hash table 303 and
registers the aforementioned hash value in an INDEX item
of the generated record. In addition, the thread assignment
controller 102 secures a storage region 304 (304(#1), 304
(#2), or the like) for storing the number (number of concur-
rently executed threads) of executed threads corresponding
to the user ID from which the hash value has been generated.

US 9,477,618 B2

9

Note that an initial value of the storage region 304 is set to
0. Then, the thread assignment controller 102 registers a
pointer value indicating an address of the secured storage
region 304 in a pointer item of the record newly generated
on the hash table 303. Then, the thread assignment controller
102 acquires the pointer value. For example, a storage
region 304(#1) is secured for the hash value “1”, while the
hash value “1” and the pointer value “0x60680000” are
registered in the new record on the hash table 303. Alter-
natively, for example, a storage region 304(#2) is secured for
a hash value “2”, while the hash value “2” and a pointer
value “0x60674000” are registered in a new record on the
hash table 303. The same applies to other records on the hash
table 303.

When finding the record having the aforementioned hash
value in the INDEX item on the hash table 303, the thread
assignment controller 102 acquires the pointer value regis-
tered in the record.

The thread assignment controller 102 increments, by 1,
the number, stored in the storage region 304 on the memory
at the address indicated by the pointer value acquired from
the hash table 303 and corresponding to the user ID from
which the hash value has been generated, of executed
threads. Concurrently, the thread assignment controller 102
increments, by 1, the number, corresponding to all the users
and stored in a storage region 305 on the memory of the
server machine 100, of executed threads.

The thread assignment controller 102 executes the fol-
lowing control operation every time access to the disk
device 120 by a server thread 106 is completed.

First, the thread assignment controller 102 executes the
process 302 of generating the hash value for the user ID 301
corresponding to the server thread 106 that has completed
the access.

The thread assignment controller 102 searches the record
having the generated hash value in the INDEX item on the
hash table 303 stored on the memory of the server machine
100 and acquires the pointer value registered in the record.

Since the access has been completed, the thread assign-
ment controller 102 reduces, by 1, the number, stored in the
storage region 304 at the address indicated by the pointer
value acquired from the hash table 303 on the memory and
corresponding to the user ID from which the hash value has
been generated, of executed threads. Concurrently, the
thread assignment controller 102 reduces, by 1, the number,
stored in the storage region 305 and corresponding to all the
users, of executed threads.

The thread assignment controller 102 executes the fol-
lowing control process before managing the increase and
reduction in the number of executed threads.

The thread assignment controller 102 controls the num-
bers, stored in storage regions 304, of executed threads for
user [Ds #1, #2, . . . and thereby inhibits the numbers of the
executed threads for the users IDs from exceeding the
maximum number, stored in a storage region 307 on the
memory of the server machine 100, of threads assignable to
one user (306 in FIG. 3).

Specifically, when receiving a request from the request
receiver 101, the thread assignment controller 102 refer-
ences, through the hash table 303, the number, stored in a
storage region 304 corresponding to a user ID added to the
request, of executed threads.

If the number, stored in the aforementioned storage region
304, of the executed threads exceeds the maximum number,
stored in the storage region 307, of threads assignable to one
user, the thread assignment controller 102 does not activate
a server thread 106 based on the received request. In this

5

10

20

25

30

40

45

50

55

60

65

10

case, the request receiver 101 keeps the request waiting in
the request queue secured on the memory of the server
machine 100. This control operation may inhibit a user who
processes a large amount of data from taking a resource
away from a user who processes a small amount of data.
Thus, the control operation may achieve access that is fair
between users.

On the other hand, if the number, stored in the aforemen-
tioned storage region 304, of the executed threads does not
exceed the maximum number, stored in the storage region
307, of threads assignable to one user, the thread assignment
controller 102 executes the following control.

The thread assignment controller 102 controls the assign-
ment of threads so as to ensure that the number, stored in the
storage region 305, of executed threads for all the users does
not exceeds the number, stored in a storage region 308 on the
memory of the server machine 100, of times of concurrently
executable access (306 in FIG. 3).

When receiving a request from the request receiver 101,
the thread assignment controller 102 activates a server
thread 106 based on the received request if the number,
stored in the storage region 305, of executed threads for all
the users does not exceed the number, stored in the storage
region 308, of times of concurrently executable access.

If the number of the executed threads for all the users
exceeds the number of times of concurrently executable
access, the thread assignment controller 102 executes the
following control operation.

The thread assignment controller 102 references the hash
table 303, acquires the minimum number of executed
threads among the numbers, stored in the storage regions
304 for the users, of executed threads, and resets the
acquired number as the maximum number, stored in the
storage region 307, of threads assignable to one user.

As a result, regarding a user 1D for which the number of
executed threads is large, the issuance of a request to a server
thread 106 is suppressed so as to ensure that the number of
the executed threads is equal to or smaller than the afore-
mentioned reset maximum number of threads assignable to
one user. Specifically, based on a user for which a counted
number of executed threads is smallest among the numbers
(numbers of times of concurrently executed threads),
counted for the users, of executed threads, the numbers of
server threads 106 executed based on requests from the other
users are reduced.

In this manner, the number (number of concurrently
executed threads) of executed threads may be controlled so
as to ensure that a request provided by a user who accesses
a large amount of data to be input and output does not
significantly delay a request provided by a user who
accesses a small amount of data to be input and output. As
a result, access fairness between users may be secured.

Next, a detailed control operation of the distributed file
system with the configuration illustrated in FIG. 1 according
to the first embodiment is described.

First, a detailed operation of the request transmitter 111
included in the client machine 110 is described below.

FIG. 4 is a diagram describing the request transmitter 111
included in the client machine 110 illustrated in FIG. 1.

When users perform access 401A, 401B, and the like to
the distributed file system, the request transmitter 111 gen-
erates requests 402A, 402B, and the like and transmits the
requests 402A, 4026, and the like to the server machine 100
illustrated in FIG. 1.

The request transmitter 111 adds, to the requests 402A,
402B, and the like, information (user IDs) identifying the
users who perform the access 401A, 401B, and the like.

US 9,477,618 B2

11

Thus, the request receiver 101 of the server machine 100
may identify the users based on the requests.

As described above with reference to FIG. 3, the thread
assignment controller 102 may control, based on the user
1Ds, the number (number of concurrently executed threads)
of executed threads for each of the users and the number
(number of concurrently executed threads) of executed
threads for all the users upon the activation of a server thread
106.

FIG. 5 is a diagram illustrating a specific example of data
formats of the requests 402A, 402B, and the like illustrated
in FIG. 4. A value that indicates a request type such as write
(indicating a write request) or read (indicating a read
request) is stored at a position corresponding to a data offset
0 of the request, for example. A user ID such as “5300” is
stored at a position corresponding to a data offset 8 of the
request, for example. A size that indicates the length of data
to be written is stored at a position corresponding to a data
offset 16 of the request. If the request type indicates write,
the data to be written in the disk device 120 (refer to FIG.
1) is stored at a position corresponding to a data offset 24 of
the request.

Next, detailed operations of the request receiver 101
included in the server machine 100 are described.

Data sizes (for example, the sizes of data requested to be
written) of requests transmitted from the client machine 110
may be different. Thus, if writing of data in the disk device
120 is executed, processing times may vary and the load
state of the disk device 120 may not be accurately calcu-
lated. Even if the data sizes of the requests transmitted from
the client machine 110 are different, the request receiver 101
divides a data size of each of the requests received from the
client machine 110 into certain sizes causing each of time
periods for access to be a certain time period or less. The
divided data sizes may be equal to the block size (a multiple
of' 4 KB (kilobytes) in general) of the file system of the disk
device 120, for example.

It is apparent from measured values that times for pro-
cessing executed for the access to the disk device 120 are not
significantly different when the divided data sizes are equal
to or smaller than the block size. FIG. 6 is a diagram
illustrating an example of a graph of time periods (of
seconds) for writing data with respect to the sizes of the data
to be written if the disk device 120 has a third extended
(EXT3) file system (block size=4 KB).

As is understood from the example of the graph, the times
for writing the data having the sizes equal to or smaller than
the block size (of 4 KB) in the disk device 120 are not
significantly different. Thus, the request receiver 101 divides
a data size of a request from the client machine 110 into the
same sizes as the block size and causes data items each
having the same size as the block size to be written in the
disk device 120 without writing the data with the size (refer
to FIG. 4) specified by a user. Thus, time periods for
processing executed upon disk access may be a fixed time
period, and the load state of the disk device 120 may be
accurately calculated.

In order to divide a data size of a request from the client
machine 110 into the same sizes as the block size and
process data, the request receiver 101 manages requests
using a data structure illustrated in FIG. 7.

Referring to FIG. 7, every time the request receiver 101
receives a request from the request transmitter 111 included
in the client machine 110 operated by the user, the request
receiver 101 executes the following control operation. The
request receiver 101 divides a data size of the received
request into certain sizes equal to, for example, the block

10

15

20

25

30

35

40

45

50

55

60

65

12

size of 4 KB and causes data items each having the certain
size to be stored (queued) in a request queue 305 (305A,
305B, or the like) secured as a storage region for the user on
the memory included in the server machine 100.

More specifically, the request receiver 101 executes a
process 702 of generating a hash value for a user ID 701
added to the received request. For example, the hash value
“1” is generated for the user ID “5300” (refer to 402A of
FIG. 4) added to the received request A.

The request receiver 101 searches a record having the
generated hash value in an INDEX item on a hash table 703
(different from the hash table 303 illustrated in FIG. 3)
stored on the memory of the server machine 100.

If the interested record does not exist on the hash table
703, the request receiver 101 executes the following process.
First, the request receiver 101 generates a new record on the
hash table 703 and registers the hash value in an INDEX
item of the new record. In addition, the request receiver 101
secures a request queue 704 (704A, 704B, or the like) for
storing requests representing, for example, the same data
sizes as the block size and obtained by dividing the request
corresponding to the user ID from which the hash value has
been generated. Then, the request receiver 101 registers a
top address of the generated request queue 704 in an address
item of the record newly generated on the hash table 703.
Then, the request receiver 101 acquires the top address. For
example, a request queue 704A is secured for the hash value
“1” generated from the user ID “5300” indicated by the
request 402A illustrated in FIG. 4. Then, the hash value “1”
and the top address “0x70680000” of the request queue
704 A are registered in the new record on the hash table 703.
Alternatively, for example, a request queue 704B is secured
for a hash value “3” generated from a user 1D “5400”
indicated by a request queue 704B illustrated in FIG. 4.
Then, the hash value “3” and a top address “0x70665000” of
the request queue 704B are registered in a new record on the
hash table 703.

When finding the record having the hash value in the
INDEX item on the hash table 703, the request receiver 101
acquires the top address registered in the found record.

The request receiver 101 generates one or more requests
obtained by dividing the data size of the received request
into the certain sizes such as the same sizes as the block size
of'4 KB and registers the generated requests at the end of the
request queue 704 indicated by the top address acquired
from the hash table 703 on the memory. For example,
requests 705A-1 (having a data length of 4 KB), 705A-2
(having a data length of 4 KB), and 705A-3 (having a data
length of 2 KB) are generated by dividing the data (illus-
trated in FIG. 4) having a data length of 10 KB and to be
written. Then, the requests 705A-1, 705A-2, and 705A-3 are
associated with the user ID added to the request 402A and
sequentially registered in the request queue 704A to be
accessed through the hash table 703. Alternatively, for
example, requests 705B-1 (having a data length of 4 KB)
and 705B-2 (having a data length of 1 KB) are generated by
dividing the data (illustrated in FIG. 4) having a data length
of 5 KB and to be written. Then, the requests 705B-1 and
705B-2 are associated with the user ID added to the request
402B and sequentially registered in the request queue 704B
to be accessed through the hash table 703.

The data size (data length) of the last request 705A-3
registered in the request queue 704 A and the data size (data
length) of the last request 705B-2 registered in the request
queue 7048 are not equal to the block size of 4 KB and are
fractions. As described above with reference to FIG. 6,
however, time periods for processing of the requests are each

US 9,477,618 B2

13

a certain time period that is nearly equal to a period of time
for processing of a request having a data size of 4 KB. In the
first embodiment, time periods for disk access executed
based on requests are equal to the certain time period, and
thus the load state of the disk device 120 may be accurately
calculated.

As described above, since the request queues 704 (704A,
704B, and the like) are managed by the request receiver 101,
the thread assignment controller 102 may access the disk
device 120 on a user basis and a block size basis as described
later.

Next, detailed operations of the thread assignment con-
troller 102 included in the server machine 100 are described.

FIG. 8 is a diagram illustrating an example of a data
configuration of a hash table 803 stored on the memory of
the server machine 100 by the thread assignment controller
102. The hash table 803 has the same function as the hash
table 303 described with reference to FIG. 3. However, the
storage regions 304 described with reference to FIG. 3 and
storing the numbers of threads executed for the user IDs are
directly stored as one item in the hash table 803 and the
pointer value item is omitted in FIG. 8. In addition, the
storage region 305 described with reference to FIG. 3 and
storing the number of threads executed for all the users is
stored at the end of the hash table 803 as illustrated in FIG.
8. In addition, an INDEX item for storing hash values, and
the user IDs from which the hash values are generated, are
stored in records included in the hash table 803.

The thread assignment controller 102 assigns server
threads 106 (FIG. 1) to requests received from the request
receiver 101 for the user IDs and representing, for example,
the same data sizes as the block size of 4 KB on a user basis
using a round-robin method. The thread assignment control-
ler 102 manages the number (number of assigned threads) of
executed threads on the hash table 803 for each user and
controls the numbers of executed threads so as to inhibit the
numbers of the executed threads from exceeding the number
of times of concurrently executable access to the disk device
120 due to the assignment of a server thread 106.

FIG. 9 is a flowchart of an example of a process of
controlling the assignment of threads. At least one central
processing unit (CPU) of the server machine 100 reads, into
the memory, a thread assignment control program stored in
an external storage device or the like and executes the
process of controlling the assignment of threads. In the
process of controlling the assignment of threads, the CPU of
the server machine 100 executes a function of the thread
assignment controller 102. In addition, the process is
executed as a main process of the distributed file system on
the server machine 100. The single CPU may include
multiple cores.

First, a variable Ta on the memory is initialized to 999999,
a variable Umax is initialized to a value Ta, and a variable
Count is initialized to 0 (in step S901). The variable Ta
corresponds to the storage region 308 illustrated in FIG. 3
and holds the number of times of concurrently executable
access. The variable Umax corresponds to the storage region
307 illustrated in FIG. 3 and holds the maximum number of
threads assignable to one user. The variable Count is a
variable that controls a time interval at which a process of
calculating the number of times of concurrently executable
access in step S909 (described later) is executed. The
process of calculating the number of times of concurrently
executable access is a function of the disk load state analyzer
104 illustrated in FIG. 1. After the value of the variable
Count is initialized and set to 0 in step S901, the value of the
variable Count is incremented by 1 in step S907 every time

10

20

25

30

35

40

45

50

55

60

65

14

access executed based on a single request is completed.
Then, if it is determined that the value of the variable Count
reaches 1000 in step S908, the process of calculating the
number of times of concurrently executable access is
executed in step S909. After that, the value of the variable
Count is reset to 0 in step S910. Then, the same process is
repeated.

Next, a top request registered in any of the request queues
704 (704A, 704B, . . .) generated on the memory by the
request receiver 101 and provided for the users is referenced
using the round-robin method or the like, for example (in
step S902).

Next, the hash table 803 generated on the memory is
referenced, and the number of executed threads for a user ID
corresponding to the request queue 704 referenced in step
S902 is acquired (in step S903). Then, it is determined
whether or not the number of executed threads is smaller
than the maximum number, held by the variable Umax, of
threads assignable to one user (in step S903).

If the answer to the determination of step S903 is YES, it
is determined whether or not the number, stored in the
storage region at the end of the hash table 803, of executed
threads for all the users is smaller than the number, held by
the variable Ta, of times of concurrently executable access
(in step S904).

If the answer to the determination of step S904 is YES, a
server thread 106 (FIG. 1) is assigned to the request refer-
enced in step S902 and corresponding to the user ID (in step
S905). After that, the number, corresponding to the user ID
on the hash table 803, of executed threads is incremented by
1 (in step S905). Concurrently, the number, stored at the end
of the hash table 803, of executed threads for all the users is
incremented by 1 (in step S905).

After that, a disk access process is executed by the server
thread 106 assigned to the request referenced in step S902 in
step S905 and corresponding to the user ID (in step S906).
In the disk access process, a function of the disk access time
recorder 103 illustrated in FIG. 1 is executed. Details of the
disk access process are described with reference to FIGS. 9
to 11.

When the disk access process executed on the aforemen-
tioned request is completed, the number of executed threads
that is registered in the record corresponding to the user 1D
indicated on the hash table 803 and subjected to the disk
access process is reduced by 1 (in step S907). Concurrently,
the number of executed threads for all the users that is stored
at the end of the hash table 803 is reduced by 1 (in step
S907). In addition, the variable Count is incremented by 1
(in step S907).

After that, it is determined whether or not the value of the
variable Count reaches 1000 (in step S908).

If the answer to the determination of step S908 is NO, the
process returns to step S902 and is executed on the next
request.

While the process is repeatedly executed on each request,
the value of the variable Count is incremented in step S907.
When the value of the variable Count reaches 1000, the
answer to the determination of step S908 is YES.

As aresult, the process of calculating the number of times
of concurrently executable access is executed (in step S909).
In this process, the function of the disk load state analyzer
104 illustrated in FIG. 1 is executed. Details of the process
are described with reference to FIG. 12 and FIGS. 13A to
13C. As a result of the process, the number, held by the
variable Ta, of times of concurrently executable access is
updated. The value of the variable Ta is set to a large value
in step S901 immediately after the activation of the system

US 9,477,618 B2

15

and the variable Ta becomes in a state in which server
threads 106 are assignable to requests without being limited.
However, when a time elapses and the number of times of
access executed in concurrent increases, the process of
calculating the number of times of concurrently executable
access in step S909 limits the number, held by the variable
Ta, of times of concurrently executable access to an appro-
priate value based on the current load state of the disk device
120 or to “3” or the like.

When the number of times of concurrently executable
access is calculated, the value of the variable Count is reset
to 0, and the number, newly held by the variable Ta in step
S909, of times of concurrently executable access is set as the
maximum number, held by the variable Umax, of threads
assignable to one user. Specifically, immediately after the
number of times of concurrently executable access is
updated, server threads 106 of which the number is equal to
or smaller than the number of times of concurrently execut-
able access may be assigned fairly for the users.

After that, the process returns to step S902 and is executed
on the next request.

In the aforementioned process, when the number of
executed threads for the user ID corresponding to the request
queue referenced in step S902 reaches the maximum num-
ber, held by the variable Umax, of threads assignable to one
user or the answer to the determination of step S903 is NO,
a server thread 106 is not activated. In this case, the
aforementioned request is kept waiting in the request queue
704. After that, the process returns to step S902 and is
executed on a request corresponding to the next user ID. The
operation of limiting the number of executed threads for
each user based on the variable Umax may inhibit a user
who processes a large amount of data from taking a resource
away from a user who processes a small amount of data.
Thus, access that is fair between the users is achieved even
if the number of executed threads for all the users does not
exceed a predetermined number (for example, Ta).

In the aforementioned process, when the number of
executed threads for all the users reaches the number, held
by the variable Ta, of times of concurrently executable
access or the answer to the determination of step S904 is
NO, the following control operation is executed. The hash
value 803 is referenced, the minimum number of executed
threads among the numbers of executed threads for the user
IDs is acquired, and the acquired number is reset as the
maximum, held by the variable Umax, of threads assignable
to one user (in step S911). As a result, in step S903,
regarding a user ID for which the number of executed
threads is large, the activation of a server thread 106 based
on a request is suppressed so as to ensure that the number of
the executed threads is smaller than the reset value of the
variable Umax. Specifically, based on a user for which the
number of executed threads is smallest among the numbers,
calculated for the users, of executed threads, the number of
server threads 106 executed based on a request from another
user is reduced. The process of step S911 increases a
possibility that a request from a user who accesses a rela-
tively small amount of data to be input and output is
processed. Thus, access that is fair between users is achieved
by the process of step S911 even if the number of executed
threads for all the users exceeds the predetermined number
(for example, Ta).

In this manner, the number (number of times of concur-
rently executed threads) of executed threads may be con-
trolled by the control operation exemplified in FIG. 3 so as
to ensure that a delay, caused by a request provided by a user
who accesses a large amount of data to be input and output,

30

40

45

50

55

60

65

16

of a request provided by a user who accesses a relatively
small amount of data to be input and output is avoided. As
a result, access that is fair between users may be secured.

In step S911, the value of the variable Umax may not be
set to a value corresponding to a user ID for which the
number of executed threads is smallest. In step S911, the
value of the variable Umax may be controlled and set to a
value smaller than the current value of the variable Umax.

Next, detailed operations of the disk access time recorder
103 illustrated in FIG. 1 are described.

As described above, the disk access time recorder 103
records, in an aggregation table 1 exemplified in FIG. 10,
start times (disk access start times 1001) of access to the disk
devices 120 and end times (disk access end times 1002) of
the access to the disk devices 120, for example. Then, the
disk access time recorder 103 calculates, from the recorded
start and end times of the access, elapsed time periods 1003
and the numbers 1004 of times of access executed in
concurrent and stores the calculated elapsed time periods
1003 and the calculated numbers 1004 in the aggregation
table 1.

FIG. 11 is a flowchart of a detailed example of the disk
access process of step S906 illustrated in FIG. 9. In the disk
access process, a function of the disk access time recorder
103 is executed and controls the aggregation table 1 having
an exemplary data configuration illustrated in FIG. 10.

When step S906 illustrated in FIG. 9 is called, a new
record is generated in the aggregation table 1. Then, a
current time is written in an item included in the new record
and representing a disk access start time 1001 (in step
S1101).

Next, the disk access process is executed by the server
thread 106 assigned in step S905 illustrated in FIG. 9 (in step
S1102).

When the disk access process of step S1102 is completed,
a current time is written in an item representing a disk access
end time 1002 and included in the new record generated in
the aggregation table 1 in step S1101 (in step S1103). In
addition, a value of the item included in the record and
representing the disk access start time 1001 is subtracted
from a value of the item included in the record and repre-
senting the disk access end time 1002, and the result of the
subtraction is written in an item included in the same record
and representing an elapsed time period 1003 (in step
S1103).

After that, a process of calculating the number of times of
access executed in concurrent is executed (in step S1104).
An example of this calculation process is illustrated as a
flowchart in FIG. 12.

Referring to FIG. 12, first, a time value of 10 milliseconds
is set to a variable Li stored on the memory of the server
machine 100 as a unit for checking (in step S1201). In
addition, the value, set in step S1101 illustrated in FIG. 11,
of the item included in the record on the aggregation table
1 and representing the disk access start time 1001 is initially
set to the variable Ts stored on the memory (in step S1201).
Similarly, the value, set in step S1103 illustrated in FIG. 11,
of the item included in the record on the aggregation table
1 and representing the disk access end time 1002 is initially
set to the variable Te stored on the memory (in step S1201).
In addition, an initial value of O is set to a variable Total
stored on the memory and representing the total of the
numbers of times of access executed in concurrent (in step
S1201). Furthermore, an initial value of 0 is set to a variable
Chnt stored on the memory and provided to count the number
of time intervals of, for example, 10 milliseconds (in step
S1201).

US 9,477,618 B2

17

Next, processes of steps S1202 and S1203 are executed at
each of the time intervals of, for example, 10 milliseconds.

First, time periods from disk access start times 1001 to
disk access end times 1002 in records of the aggregation
table 1 having the exemplary data configuration illustrated in
FIG. 10 are referenced (in step S1202). Then, the number of
times of concurrently executed disk access is counted by
counting the number of time periods that are among the time
periods in the records and each include a time interval of; for
example, 10 milliseconds and are from the time value of the
variable Ts to a time value calculated by adding the time
value of the variable Ts to the time value of the variable Li
(in step S1202). Then, the counted number of the times of
the concurrently executed disk access is added to the vari-
able Total (in step S1202). In this process, the number of
times of access executed in concurrent in a time period of,
for example, 10 milliseconds from the time value of the
variable Ts to the calculated time value is counted by adding
the time value of the variable Ts to the time value of the
variable Li.

After that, the variable Cnt is incremented by 1, the time
value of the variable Li is added to the time value of the
variable Ts, and the new time value of the variable Ts is
obtained (in step S1203). The new time value of the variable
Ts indicates a start time of the next time period of, for
example, 10 milliseconds.

After that, it is determined whether or not the time value
of the variable Ts reaches a value of the item storing the disk
access end time 1002 indicated by the variable Te (in step
S$1204).

If the answer to the determination of step S1204 is NO,
the process returns to step S1202, and the process of
counting the number of times of access executed in concur-
rent in the next time period of, for example, 10 milliseconds
is repeated.

If the answer to the determination of step S1204 is YES,
the total, held by the variable Total, of all the numbers of
times of access executed in concurrent for the time periods
of, for example, 10 milliseconds is divided by the number,
held by the variable Cnt, of the time periods of, for example,
10 milliseconds and the result of the division is rounded off
to the closest natural number (in step S1205). Then, the
result of the calculation is written in an item that is included
in the record generated in step S1101 illustrated in FIG. 9 on
the aggregation data 1 having the exemplary data configu-
ration illustrated in FIG. 10 and represents the number 1004
of times of access executed in concurrent.

After that, the process depicted in the flowchart of FIG. 12
is terminated and the process of calculating the number of
times of access executed in concurrent in step S1104 illus-
trated in FIG. 11 is terminated. As a result, the disk access
process depicted in the flowchart of FIG. 11 is terminated
and the disk access process of step S906 illustrated in FIG.
9 is terminated.

In this manner, the function of the disk access time
recorder 103 illustrated in FIG. 1 is achieved.

Data aggregated by the aforementioned disk access pro-
cess into the aggregation table having the exemplary data
configuration illustrated in FIG. 10 is obtained by the same
calculation as the Equations (1) described with reference to
FIG. 2. However, an average of aggregated numbers of times
of access executed in concurrent is rounded off to the closest
natural number in each record (indicating each access) of the
aggregation table 1 in order to simplify the process of
calculating the number of times of concurrently executable
access using an aggregation table 2 (described later).

10

15

20

25

30

35

40

45

50

55

60

65

18

Next, detailed operations of the disk load state analyzer
104 illustrated in FIG. 1 are described.

An average of elapsed time periods is calculated from the
aggregation table 1 having the exemplary data configuration
illustrated in FIG. 10 for each of the numbers of times of
access executed in concurrent, and the aggregation table 2
having an exemplary data configuration illustrated in FIG.
13A is generated and stored on the memory of the server
machine 100.

The aggregation table 1 illustrated in FIG. 10 has only one
record that has an item storing 1 and representing the
number 1004 of times of access executed in concurrent.
First, 1 is written in an item that represents the number 1301
of times of access executed in concurrent and is included in
a record newly generated on the aggregation table 2 illus-
trated in FIG. 13A. Subsequently, a value of an item
representing an elapsed time period 1003 and included in the
record having the item storing 1 and representing the num-
ber 1004 of times of access executed in concurrent on the
aggregation table 1 (illustrated in FIG. 10), or 0.021219, is
written in an item representing an elapsed time period 1302
and included in the record having the item that stores 1 and
represents the number 1301 of times of access executed in
concurrent on the aggregation table 2 illustrated in FIG.
13A.

The aggregation table 1 illustrated in FIG. 10 has top two
records that each have an item storing 2 and representing the
number 1004 of times of access executed in concurrent.
First, 2 is written in an item that represents the number 1301
of times of access executed in concurrent and is included in
a record newly generated on the aggregation table 2 illus-
trated in FIG. 13A. Subsequently, an average of 0.030298
and 0.025819 that are values of items representing the
elapsed time periods 1003 and included in the two records
having the items representing the numbers 1004 of times of
access executed in concurrent on the aggregation table 1
illustrated in FIG. 10 is calculated to be 0.0280585. Then,
the average value of 0.0280585 is written in an item repre-
senting an average 1302 of elapsed time periods and
included in the record that has the item storing 2 and
representing the number 1301 of times of access executed in
concurrent on the aggregation table 2 (illustrated in FIG.
13A). In addition, a value of 1.32, which is obtained by
dividing the average value of 0.0280585 by the value of
0.021219 stored in the item representing the average 1302 of
elapsed time periods and included in the record having the
item storing 1 and representing the number 1301 of times of
access executed in concurrent on the aggregation table 2, is
written in an item representing a ratio 1303 of averages of
elapsed time periods and included in the record having the
item storing 2 and representing the number 1301 of times of
access executed in concurrent on the aggregation table 2.
The value of 1.32 indicates the ratio of the average 1302 of
elapsed time periods in which the number of times of access
executed in concurrent is 2 to the average 1302 of elapsed
time periods in which the number of times of access
executed in concurrent is 1.

In addition, the aggregation table 1 illustrated in FIG. 10
has the last three records that each have an item storing 3 and
representing the number 1004 of times of access executed in
concurrent. First, 3 is written in an item that represents the
number 1301 of times of access executed in concurrent and
is included in a record newly generated on the aggregation
table 2 illustrated in FIG. 13A. Subsequently, an average of
0.058311, 0.060431, and 0.063521 that are values of items
representing the elapsed time periods 1003 and included in
the three records having the items representing the numbers

US 9,477,618 B2

19

1004 of times of access executed in concurrent on the
aggregation table 1 illustrated in FIG. 10 is calculated to be
0.0607543. Then, the average value of 0.0607543 is written
in an item representing the average 1302 of elapsed time
periods and included in the record having the item that stores
3 and represents the number 1301 of times of access
executed in concurrent on the aggregation table 2 illustrated
in FIG. 13A. In addition, a value of 2.86, which is obtained
by dividing the average value of 0.0607543 by the value of
0.021219 stored in the item representing the average 1302 of
elapsed time periods and included in the record having the
item storing 1 and representing the number 1301 of times of
access executed in concurrent on the aggregation table 2, is
written in an item representing a ratio 1303 of averages of
elapsed time periods and included in the record having the
item storing 3 and representing the number 1301 of times of
access executed in concurrent on the aggregation table 2.
The value of 2.86 indicates the ratio of the average 1302 of
elapsed time periods in which the number of times of access
executed in concurrent is 3 to the average 1302 of elapsed
time periods in which the number of times of access
executed in concurrent is 1.

In order to suppress, to N times such as two times, a
reduction in a time for a response when a high load is applied
to the disk device 120, the following control may be
executed. That is, the number of times of concurrent access
to the disk device 120 is controlled and set to a certain
number so as to ensure that an elapsed time period in which
the concurrent access is executed is equal to or shorter than
N times (such as two times) of an elapsed time period in
which the number of times of access executed in concurrent
is 1. Referring to the item representing ratios 1303 of
averages of elapsed time periods on the aggregation table 2
illustrated in FIG. 13, the value of the item representing the
ratio 1303 and corresponding to the item storing 2 and
representing the number 1301 of times of access executed in
concurrent is smaller than 2 times (or is 1.32 times), while
the value of the item representing the ratio 1303 and
corresponding to the item storing 3 and representing the
number 1301 of times of access executed in concurrent is
larger than 2 times (or is 2.86 times). Thus, in the example
of the aggregation table 2 illustrated in FIG. 13A, the value
of the item that represents the number 1302 of times of
access executed in concurrent and suppressing a reduction in
a response time is 2 and determined to be the number of
times of concurrently executable access.

An average 1302 of elapsed time periods may not be
obtained for a value of an item representing the number 1301
of times of access executed in concurrent, depending on an
access pattern of a user. For example, in the aggregation
table 2 illustrated in FIG. 13B, averages 1302 of elapsed
time periods that are represented by items corresponding to
items storing 2 and 3 and representing the numbers 1301 of
times of access executed in concurrent are not obtained and
are 0, and values of items representing ratios 1303 of
averages of elapsed time periods and corresponding to the
items representing the averages 1302 are not calculated. The
ratios are calculated based on linear interpolation using a
combination of the value of the item storing 1 and repre-
senting the number 1301 of times of access executed in
concurrent and the value of the item storing 0.021219 and
representing the average 1302 of elapsed time periods and a
combination of the value of the item storing 4 and repre-
senting the number 1301 of times of access executed in
concurrent and the value of the item storing 0.0802534 and
representing the average of elapsed time periods.

15

20

25

30

35

40

45

50

55

60

65

20

The ratio of the average of the elapsed time periods in
which the number of times of access executed in concurrent
is 2=(3.78 times-1 time)/3 x1+1 time=1.92 times

The ratio of the average of the elapsed time periods in
which the number of times of access executed in concurrent
is 3=(3.78 times-1 time)/3 x2+1 time=2.85 times

If a value of an item representing the average 1302 of
elapsed time periods and corresponding to an item storing 1
and representing the number 1301 of times of access
executed in concurrent does not exist, a standard elapsed
time period is not clear. In this case, the number of times of
concurrently executable access may be controlled so as not
to be changed until data when the number of times of access
executed in concurrent is 1 is obtained.

For example, if the number of times of concurrently
executable access is changed to 2, disk access is executed
after the change in the number of times of concurrently
executable access, and the aggregation table 2 is generated,
only values of items representing averages 1302 of elapsed
time periods and corresponding to items storing 1 and 2 and
representing the numbers 1301 of times of access executed
in concurrent are obtained as exemplified in FIG. 13C. This
is due to the fact that the assignment of server threads 106
is controlled by the thread assignment controller 102 so as
to ensure that the number of times of access executed in
concurrent does not exceed 2.

In such a case, when the number of times of access
executed in parallel is 3 or more, an elapsed time period is
not clear. Thus, the linear interpolation is executed, and the
elapsed time period in which the number of times of access
executed in parallel is 3 or more is compared with the
elapsed time period in which the number of times of access
executed in parallel is 1. Then, values of items representing
averages 1302 of elapsed time periods in which the numbers
of times of access executed in parallel exceed the N times
such as 2 times are calculated according to the following
equations.

The ratio of the average of the elapsed time periods in
which the number of times of access executed in parallel is
3=(1.32 times—1 time)/1x2+1 time=1.64 times

The ratio of the average of the elapsed time periods in
which the number of times of access executed in parallel is
4=(1.32 times—1 time)/1x3+1 time=1.96 times

As described above, the amount of an increase in the
number of times of concurrently executable access may be
determined by the execution of the linear interpolation on
the number, exceeding the number of times of concurrently
executable access, of times of access executed in parallel
when the number of times of concurrently executable access
is too small (or excessively reduced or when there is a
margin for a process of the disk device 120).

FIG. 14 is a flowchart of a detailed example of the process
of calculating the number of times of concurrently execut-
able access in step S909 illustrated in FIG. 9. In this process,
a function of the disk load state analyzer 104 is executed and
controls the aggregation table 2 having the exemplary data
configuration illustrated in FIG. 13A.

First, the maximum value among values of items repre-
senting the numbers 1004, aggregated into the aggregation
table 1 exemplified in FIG. 10, of times of access executed
in parallel is set to a variable Mx stored on the memory of
the server machine 100 (in step S1401). In addition, 1 is set
to a variable He that indicates a value of an item representing
the number 1301 of times of access executed in parallel upon
the execution of the aggregation into the aggregation table 2
(in step S1401).

US 9,477,618 B2

21

Next, values of items, which represent elapsed time
periods 1003 and are included in records having items
representing the numbers 1004, equal to the variable He, of
times of access executed in parallel among values of items
representing the numbers 1004 of times of access executed
in parallel on the aggregation table 1 illustrated in FIG. 10,
are aggregated (in step S1402). If the variable He is 1,
0.021219 that is the value of the item representing the
elapsed time period 1003 and included in the record having
the item representing the number 1004 of times of access
executed in parallel and storing 1 on the aggregation table 1
illustrated in FIG. 10 is obtained as an aggregated value. If
the variable He is 2, 0.030298 and 0.025819 that are the
values of the items representing elapsed time periods 1003
and included in the two records having the items represent-
ing the numbers 1004 of times of access executed in parallel
and storing 2 on the aggregation table 1 illustrated in FIG.
10 are aggregated, and the aggregated value of 0.056117 is
obtained. If the variable He is 3, 0.058311, 0.060431, and
0.063521 that are the values of the items representing the
elapsed time periods 1003 and included in the three records
having the items representing the numbers 1004 of times of
access executed in parallel and storing 3 on the aggregation
table 1 illustrated in FIG. 10 are aggregated, and the aggre-
gated value of 0.182263 is obtained.

Next, it is determined whether or not the aggregated
elapsed time period is O (or whether or not data correspond-
ing to the value of the variable He is absent) (in step S1403).

If the total of the aggregated elapsed time periods is not
0 or the answer to the determination of step S1403 is NO, the
total of the elapsed time periods aggregated in step S1402 is
divided by the number of the items representing the aggre-
gated elapsed time periods and an average of the aggregated
elapsed time periods is calculated (in step S1404). If the
variable He is 1, the aggregated value 0£0.021219 is divided
by 1 or the number of the items representing the aggregated
elapsed time periods and the average is calculated to be
0.021219. If the variable He is 2, the aggregated value of
0.056117 is divided by 2 or the number of the items
representing the aggregated elapsed time periods, and the
average of the aggregated elapsed time periods is calculated
to be 0.0280585. If the variable He is 3, the aggregated value
of 0.182263 is divided by 3 or the number of the items
representing the aggregated elapsed time periods and the
average of the elapsed time periods is calculated to be
0.0607543. Then, the numbers, indicated by the variable He,
of times of access executed in parallel are written as the
values of the items representing the numbers 1301 of times
of access executed in parallel in the records of the aggre-
gation table 2 exemplified in FIG. 13A, and the aforemen-
tioned averages are written as the values of the items
representing the averages 1302 of the elapsed time periods
in the records of the aggregation table 2 exemplified in FIG.
13A (in step S1404). In addition, values obtained by divid-
ing the values of the items representing the averages 1302 of
the elapsed time periods and included in the records by the
value of the item representing the average 1302 of the
elapsed time periods and corresponding to the record having
the item storing 1 and representing the number 1301 of times
of'access executed in parallel are written as the values of the
items included in the records and representing the ratios
1303 of the averages of the elapsed time periods (in step
S1404). In the aforementioned calculation example, 1 is
written as the number of times of access executed in parallel,
0.021219 is written as the average of the elapsed time
periods, and 1 is written as the ratio of the averages of the
elapsed time periods in the aggregation table 2. In addition,

20

25

40

45

55

22

2 is written as the number of times of access executed in
parallel, 0.0280585 is written as the average of the elapsed
time periods, and 1.32 is written as the ratio of the averages
of the elapsed time periods in the aggregation table 2.
Furthermore, 3 is written as the number of times of access
executed in parallel, 0.0607543 is written as the average of
the elapsed time periods, and 2.86 is written as the ratio of
the averages of the elapsed time periods in the aggregation
table 2.

After that, 1 is added to the variable He (in step S1405).

Then, it is determined whether or not the value of the
variable He reaches the value of the variable Mx indicating
the maximum value among the values of the items included
in the aggregation table 1 and representing the numbers
1004 of times of access executed in parallel (in step S1406).

If the answer to the determination of step S1406 is NO,
the process returns to step S1402 and the aggregation
process is repeatedly executed on the number, represented
by the variable He after the addition of 1, of times of access
executed in parallel.

In the repeated processes of steps S1402 to S1406, if the
total of the elapsed time periods aggregated in step S1402 is
0 or a value, corresponding to the value of the variable He,
of an item representing the number 1004 of times of access
executed in parallel does not exist on the aggregation table
1, the answer to the determination of step S1403 is YES. In
this case, it is determined whether or not the value of the
variable He is 1 (in step S1409).

If the value of the variable He is not 1 or the answer to the
determination of step S1409 is NO, the aggregation of
elapsed time periods in which the number of times of access
executed in parallel is equal to the value of the variable He
is ignored, the process proceeds to step S1405, and the
aggregation process is executed on the number, indicated by
the value of the variable He after the addition of 1, of times
of access executed in parallel.

If the value of the variable He is 1 or the answer to the
determination of step S1409 is YES, a value of an item
representing an elapsed time period 1003 and corresponding
to 1 that is the number of times of access executed in parallel
and is a standard for the calculation of the number of times
of concurrently executable access is not obtained from the
aggregation table 1. In this case, the process depicted in the
flowchart of FIG. 14 is terminated, the process of calculating
the number of times of concurrently executable access in
step S909 illustrated in FIG. 9 is terminated, data when the
number of times of access executed in parallel is 1 is
obtained, and thus the number of times of concurrently
executable access is controlled so as not to be changed.

If the answer to the determination of step S1406 is YES
and the aggregation executed based on the aggregation table
1 and reflected in the aggregation table 2 is terminated, an
average 1302 of elapsed time periods is calculated for the
number, causing the answer to the determination of step
S1403 to be YES, of times of access executed in parallel as
described with reference to FIGS. 13B and 13C (in step
S1407). After that, the items representing the ratios 1303 of
the averages of the elapsed time periods and included in the
records of the aggregation table 2 are referenced, and thus
the maximum value among values of items representing the
numbers 1301 of times of access executed in parallel and
included in records indicating that the ratios are equal to or
smaller than N times is calculated. Then, the maximum
value is set to a variable Ta as the number of times of
concurrently executable access (in step S1407).

Lastly, details of the aggregation table 1 exemplified in
FIG. 10 and details of the aggregation table 2 exemplified in

US 9,477,618 B2

23

FIG. 13 are cleared (in step S1408), the process depicted in
the flowchart of FIG. 14 is terminated, and the process of
calculating the number of times of concurrently executable
access in step S909 illustrated in FIG. 9 is terminated.

As described above, if a part of data of the numbers of
times of access executed in parallel does not exist, a value
is calculated using linear interpolation, and the optimal
number of times of concurrently executable access may not
be obtained. In addition, an appropriate number of times of
concurrently executable access may change depending on an
access pattern (random access, sequential access, or the like)
of a user and a variation (a temporal reduction caused by a
failure of a part of the disks forming the RAID system) in
performance of the disks. Thus, the determined number of
times of concurrently executable access is periodically
checked. A process of checking the number of times of
concurrently executable access is executed using the vari-
able Count used in the flowchart of FIG. 9. When the
variable Count reaches 1000 in step S908 included in the
process depicted in the flowchart of FIG. 9, the process of
calculating the number of times of concurrently executable
access is executed in step S909. By changing the value of
1000, a frequency at which the number of times of concur-
rently executable access is checked is adjusted.

The thread assignment controller 102 described with
reference to FIG. 8 may execute control so as to assign a
large number of threads to a prioritized user on a priority
basis without fairly treating all the users. By executing the
control, a system administrator (root user or the like) may be
prioritized over general users.

Specifically, in a process of suppressing an upper limit on
the number of executed threads for each of the users, the
control is executed so as to ensure that an upper limit on the
number of executed threads for the prioritized user is not
suppressed. However, if the number of times of access to be
executed in parallel exceeds the number of times of con-
currently executable access for all the users, the control may
be executed so as to suppress the upper limit on the number
of executed threads for the prioritized user in order to
suppress a delay of a process of the disk device 120 for the
prioritized user.

FIG. 15 is a diagram illustrating an example of a data
configuration of a hash table 1501 stored on the memory of
the server machine 100 by the thread assignment controller
102 illustrated in FIG. 1 as the second embodiment in which
an operation of executing the aforementioned control on the
prioritized user is achieved. The hash table 1501 is formed
by adding a user type item (highlighted in gray) to the
aforementioned hash table 803 illustrated in FIG. 8. As
values of the user type item, “general” and “priority” are set,
for example.

FIG. 16 is a flowchart of an example of a process of
controlling the assignment of the threads according to the
second embodiment in which the operation of executing the
control on the prioritized user is achieved. In FIG. 16, steps
of executing the same processes as the aforementioned
flowchart of FIG. 9 are indicated by the same reference
numbers as the flowchart of FIG. 9. A difference between the
process depicted in the flowchart of FIG. 16 and the process
depicted in the flowchart of FIG. 9 is a control process to be
executed if the answer to the determination of step S903 is
NO.

Referring to FIG. 16, if the number of executed threads
for the user ID corresponding to the request queue 703
referenced in step S902 reaches the maximum number, held
by the variable Umax, of threads assignable to one user or
the answer to the determination of step S903 is NO, step

5

10

15

20

25

30

35

40

45

50

55

60

65

24

S1601 is executed. In step S1601, a value of a user type item
corresponding to the user ID currently processed is refer-
enced on the hash table 803 having the exemplary data
configuration illustrated in FIG. 15. Then, it is determined
whether or not the value of the user type item indicates
“priority” (in step S1601).

If the value of the user type item does not indicate
“priority” and indicates “general” (the user ID illustrated in
FIG. 15 is not 0, for example) or the answer to the deter-
mination of step S1601 is NO, a server thread 106 is not
activated in the same manner as the flowchart of FIG. 9.

If the value of the user type item indicates “priority” (the
user ID illustrated in FIG. 15 is O or indicates a root user or
the like) or the answer to the determination of step S1601 is
YES, the process returns to step S904 and a server thread
106 may be assigned. However, if the number of executed
threads for all the users reaches the number, held by the
variable Ta, of times of concurrently executable access or the
answer to the determination of step S904 is NO, the same
control process as the flowchart of FIG. 9 is executed and the
assignment of a server thread 106 to the prioritized user is
suppressed.

As described above, in the control operation according to
the second embodiment, a failure of a process performed by
the prioritized user such as the system administrator may be
inhibited by the process of controlling the number of threads
executed to access the disk device 120.

The thread assignment controller 102 described with
reference to FIG. 8 does not use the round-robin method in
order to assign the threads and may control, based on the
amounts (hereinafter referred to as 10 amounts) of data
subjected to file access in the past, the assignment of threads
to users while prioritizing a user whose 10 amount is small
over a user whose 1D amount is large. The execution of the
control may reduce the probability of the occurrence of a
delay, caused by access performed by the user whose 10
amount is large, of access performed by the user whose 10
amount is small.

Specifically, in the process of suppressing an upper limit
on the number of executed threads for each user, the control
may be executed without the round-robin method so as to
ensure that a thread is assigned to a user whose past 10
amount is smallest. However, the 10 amounts may be
periodically cleared in order to avoid a state in which a
thread is not assigned to a user whose 10 amount was
temporarily large in the past.

FIG. 17 is a diagram illustrating an exemplary data
configuration of a hash table 1701 stored on the memory of
the server machine 100 by the thread assignment controller
102 as the third embodiment in which an operation of
executing the control based on the IO amounts is achieved.
The hash table 1701 is formed by adding an 10 amount item
(highlighted in gray) to the aforementioned hash table 803
illustrated in FIG. 8. Values of the IO amount item may be
set on a bite basis.

FIG. 18 is a flowchart of an example of a process of
assigning a thread according to a third embodiment in which
an operation of executing the aforementioned control based
on the 10 amounts is achieved. In FIG. 18, steps of executing
the same processes as the flowchart of FIG. 9 are represented
by the same reference numbers as the flowchart of FIG. 9.
Differences between the process depicted in the flowchart of
FIG. 18 and the process depicted in the flowchart of FIG. 9
are steps S902', S907', S910' with which steps S902, S907,
and S910 illustrated in FIG. 9 are replaced.

In step S902 illustrated in FIG. 9, a request within any of
the request queues 704 (704A, 704B, . . .) (exemplified in

US 9,477,618 B2

25

FIG. 7) generated for the users by the request receiver 101
and stored on the memory is referenced according to the
round-robin method, for example. On the other hand, in step
S902' illustrated in FIG. 18, a request within a request queue
704 for a user ID corresponding to an IO amount item
representing the smallest IO amount is referenced in the
hash table 1701 having the exemplary data configuration
illustrated in FIG. 17.

In step S907' illustrated in FIG. 18, the process of step
S907 illustrated in FIG. 9 and the following process are
executed. In the hash table 1701 having the exemplary data
configuration illustrated in FIG. 17, an IO amount of current
disk access is added to a value of an IO amount item
corresponding to a user ID for which the disk access process
is executed.

In step S910' illustrated in FIG. 18, the process of step
S910 illustrated in FIG. 9 is executed and values of IO
amount items of all records for all user IDs in the hash table
1701 having the exemplary data configuration illustrated in
FIG. 17 are cleared. This avoids a state in which a thread is
not assigned to a user whose 10 amount was temporarily
large in the past.

FIG. 19 is a diagram illustrating an example of a hardware
configuration of the server machine 100 that achieves the
distributed file system provided with the functions illustrated
in FIG. 1 as a software process.

A computer illustrated in FIG. 19 includes at least one
CPU 1901, a memory 1902, an input device 1903, an output
device 1904, an external storage device 1905, a portable
storage medium driving device 1906, and a communication
interface 1907, which are connected to each other by a bus
1908. A portable storage medium 1909 is inserted into the
portable storage medium driving device 1906. The configu-
ration illustrated in FIG. 19 is an example of the server
machine 100 that achieves the distributed file system illus-
trated in FIG. 1. The computer is not limited to this con-
figuration.

The CPU 1901 controls the overall server machine 100.
The memory 1902 is a RAM or the like and temporarily
stores a program and data upon the execution of the pro-
gram, the update of the data, or the like, while the program
and the data are stored in the external storage device 1905
(or the portable storage medium 1909). As the data, the hash
tables illustrated in FIGS. 3, 7, 8, 15, and 17, the request
queues, the aggregation table 1 illustrated in FIG. 10, the
aggregation table 2 illustrated in FIGS. 13A to 13C, and the
like are stored in the memory 1902. The CPU 1901 reads the
program into the memory 1902, executes the program, and
thereby controls the overall the server machine 100.

The input device 1903 detects an input operation per-
formed by a user through a keyboard, a mouse, or the like
and notifies the CPU 1901 of a result of the detection.

The output device 1904 outputs data transmitted under
control of the CPU 1901 to a display device or a printing
device.

The external storage device 1905 is, for example, a hard
disk storage device. The external storage device 1905 is used
mainly to store various types of data and the program.

The portable storage medium driving device 1906 stores
the portable storage medium 1909 such as an optical disc, an
SD card, or a CompactFlash (registered trademark) card and
plays an auxiliary role for the external storage device 1905.

The communication interface 1907 is a device configured
to connect the server machine 100 to a communication line
such as a local area network (LAN) or a wide area network
(WAN).

10

15

20

25

30

35

40

45

50

55

60

65

26

The system according to the present embodiment is
achieved by causing the CPU 1901 to execute a process
program having the functions achieved by the processes
depicted in the flowcharts of FIGS. 9, 11, 12, 14, 16, and 18
and the like. The program may be stored in the external
storage device 1905 or the portable storage medium 1909
and distributed or acquired from the network 130 (illustrated
in FIG. 1) connected to the communication interface 1907.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in
understanding the invention and the concepts contributed by
the inventor to furthering the art, and are to be construed as
being without limitation to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although the
embodiments of the present invention have been described
in detail, it should be understood that the various changes,
substitutions, and alterations could be made hereto without
departing from the spirit and scope of the invention.

What is claimed is:

1. An information processing device, comprising:

a memory; and

one or more central processing units coupled to the

memory and configured to:

control accesses to a device based on requests from
users,

record a start time of each access to the device and an
end time of each access to the device,

determine a load state of the device based on an elapsed
time period from a start time to an end time, and

limit, based on the load state of the device, a number of
threads for each one of the users, the threads being
concurrently executable programs to access the
device based on access requests to the device from
each one of the users.

2. The information processing device according to claim
15

wherein the one or more central processing units are

configured to divide a data size of the requests from the
users into a certain size causing an elapsed time period
for each access to the device to be within a certain
elapsed time period and of executing each access to the
device,

wherein the one or more central processing units are

configured to count, for each access, a number of times
of the accesses, executed in concurrent, to the device
for each of certain time periods within the elapsed time
period for each access and to calculate, for each access,
a number of times of accesses executed concurrently
within the elapsed time period for each access from a
result of counting the number of times of accesses for
each of the certain time periods,

wherein the determination is to aggregate elapsed time

periods for numbers of times of accesses executed
concurrently using the number of times of accesses
executed concurrently within an elapsed time period for
each access and calculate, based on a result of aggre-
gation, number of times of concurrently executable
accesses, suppressing a delay of each access to the
device, of times of accesses executed concurrently, and
wherein the control is to limit the number of the threads
that are concurrently executable programs to access the
device based on the requests from each one of the users
so as to ensure that the limited number of the threads
does not exceed number of times of concurrently
executable accesses for each one of the users.

US 9,477,618 B2

27

3. The information processing device according to claim
25

wherein the certain size divided from the data size of the

requests, is each equal to a block size of a file system
of the device.

4. The information processing device according to claim
2, wherein when an elapsed time period corresponding to a
number of times of accesses executed concurrently is not
calculated from records of elapsed time periods for accesses
and records of numbers of the times of accesses executed
concurrently, the determination is to calculate the elapsed
time periods corresponding to a number of times of accesses
executed concurrently by executing interpolation based on
records of the elapsed time periods for accesses using size
the certain sizes and records of numbers of the times of the
accesses executed concurrently.

5. The information processing device according to claim
25

wherein the control is to count a number of concurrently

executed threads for each one of the users and number
of concurrently executed threads for the users, process
the requests from the users so as not to cause the
counted number of the concurrently executed threads
for the users to exceed a number of times of concur-
rently executable accesses, and reduce, based on a user
for which the counted number of threads is smallest
among counted numbers of concurrently executed
threads for the users, a number of threads that are
concurrently executed to access the device based on a
request from another user when the request from the
another user causes the counted number of concurrently
executed threads for the users to exceed a number of
concurrently executable accesses.

6. The information processing device according to claim
55

wherein the control is to assign, to a prioritized user on a

priority basis, a number of threads that are concurrently
executed to access the device based on a request for the
prioritized user.

20

25

30

35

28

7. The information processing device according to claim

wherein the control is to assign, on a priority basis to a

user who has accessed, in the past, data of which an
amount is smaller than amounts of data accessed by
each of other users in the past, a number of threads that
are concurrently executed to access the device based on
requests for the user.

8. A non-transitory, computer-readable recording medium
having stored therein a program for causing a computer to
execute a process, the process comprising:

recording, in an information processing device configured

to control accesses to a device based on requests from
users, a start time of each access to the device and an
end time of each access to the device;

determining a load state of the device based on an elapsed

time period from a start time of each access to an end
time of each access; and

limiting, based on the load state of the device, a number

of threads for each one of the users, the threads being
concurrently executable programs to access the device
based on access requests to the device from the each
one of the users.

9. A method for controlling an information processing
device and causing computer to execute:
recording, in the information processing device config-

ured to control accesses to a device based on requests
from users, a start time of each access to the device and
an end time of each access to the device;

determining a load state of the device based on an elapsed

time period from a start time to an end time; and

limiting, based on the load state of the device, a number

of threads for each one of the users, the threads being
concurrently executable programs to access the device
based on access requests to the device from each one of
the users.

